
NASA-CR-204886

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 100, NO. A2, PAGES 1611-1624, FEBRUARY 1, 1995

One-dimensional hybrid satellite track model for the Dynamics

Explorer 2 (DE 2) satellite
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R. G. Roble, 2 J. D. Winningham, 3 and J. B. Gary 4

Abstract. A one-dimensional hybrid satellite track model has been developed to calculate the high-

latitude thermospheric/ionospheric structure below the satellite altitude using Dynamics Explorer 2

(DE 2) satellite measurements and theory. This model is based on Emery et al. (1985) satellite track
code but also includes elements of Roble et al. (1987b) global mean thermosphere/ionosphere

model. A number of parameterizafions and data handling techniques are used to input satellite data

from several DE 2 instruments into this model. Profiles of neutral atmospheric densities are deter-

mined from the MSIS-90 model and measured neutral temperatures. Measured electron precipitation

spectra are used in an auroral model to calculate particle impact ionization rates below the satellite.
These rates are combined with a solar ionization rate profile and used to solve the O + diffusion equa-

tion, with the measured electron density as an upper boundary condition. The calculated O + density

distribution, as well as the ionization profiles, are then used in a photochemical equilibrium model
to calculate the electron and molecular ion densities. The electron temperature is also calculated by

solving the electron energy equation with an upper boundary condition determined by the DE 2
measurement. The model enables calculations of altitude profiles of conductivity and Joule heating

rate along and below the satellite track. In a first application of the new model, a study is made of

thermospheric and ionospheric structure below the DE 2 satellite for a single orbit which occurred
on October 25, 1981. The field-aligned Poynting flux, which is independently obtained for this orbit,

is compared with the model predictions of the height-integrated energy conversion rate. Good quan-

titative agreement between these two estimates has been reached. In addition, measurements taken
at the incoherent scatter radar site at Chatanika (65.1 ° N, 147.4° W) during a DE 2 overflight are

compared with the model calculations. A good agreement was found in lower thermospheric con-

ductivities and Joule heating rate.

1. Introduction

Comprehensively instrumented satellites have been used to

study high-latitude thermosphere and ionosphere processes for
a number of years. The Dynamics Explorer 2 (DE 2) satellite,

in particular, was instrumented to measure auroral particles

and fields, as well as neutral atmospheric and ionospheric
parameters within the high-latitude thermosphere. These mea-
surements have greatly improved our understanding of the

various physical processes in this region. However, a signifi-

cant gap in knowledge and understanding still exists in the
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lower thermosphere/ionosphere due to relative inaccessibility

of this region to direct experimental approaches. Several

detailed numerical models have been developed to study the

dynamics and energetics of the thermosphere and ionosphere.

including the lower thermospheric region. In particular, the
National Center for Atmospheric Research thermosphere-

ionosphere general circulation model (NCAR-TIGCM) has

had a large measure of success in calculating wind and tempe-
rature fieHs similar to those observed from the DE 2 satellite

[Hays et al., 1984; Roble et al.. 1984; Killeen et al., 1986;
Killeen and Roble, 1988]. A one-dimensional global mean

thermosphere/ionosphere/mesosphere model has also been

developed to study the global average structure in this region
within the framework of NCAR-TIGCM [Roble et al., 1987;

Roble and Dickinson, 1989]. The calculated global average

structure from this model compares well with the globally
averaged structure determined from ionospheric and thermo-

spheric empirical models.

Large scale numerical models such as the NCAR-TIGCM
require the parameterization of auroral energy and momentum

inputs to the neutral thermosphere. The AMIE technique of

Richmond and Kamide [1988] uses a data assimilation method

to provide such inputs and is critically dependent on know-
ledge of the ionospheric conductivities in the lower thermo-

spheric dynamo region. The study of energy exchange
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between the magnetosphere and ionosphere also requires
detailed information on Joule heating rates in the lower ther-

mosphere. It is therefore of value to develop a "satellite track"

model that uses direct satellite measurements in the upper ther-

mosphere to estimate the conductivity and Joule heating rotes
in the lower thermosphere.

Several satellite-based empirical models have been con-
structed to describe electric conductivities [Wallis and

Budzinski, 1981; Fuller-Rowell and Evans, 1987], electric
fields [Heppner, 1977; Heelis et al.. 1982; Foster. 1983] and

Joule heating [Foster et al., 1983; Heelis and Coley 1988].
Emery et al. [1985] developed a satellite track model that uses

the DE 2 measurements to calculate the ionospheric/thermo-
spheric structure down to about 80 km below the satellite orbit.

This model has also been used to study the Joule heating rate

in the lower thermosphere and mesosphere for a proton auroral
event [Roble et al., 1987a], but these model predictions have
not been compared with direct experimental data from the

lower thermosphere. In this paper, we extend the work of
Emery et al. to include the ionospheric processes that are

modeled in the global mean thermosphere/ionosphere model.

The extended model is then used m study the ionospheric

structures below a single satellite orbit from October 25, 1981.

We also compare the model predictions of the height-inte-

grated energy conversion rate with the field-aligned Poynting
flux, which is independently calculated for this orbit (J. B.

Gary et al., Examples of Poynting vector determination using
DE-B satellite data, submitted to Journal of Geophysical
Research, 1994) (hereinafter referred to as Gary et al. submit-
ted manuscript. 1994). Finally. We compare the extended

satellite track model predictions with measurements taken at

the incoherent scatter radar site at Chatanika (65.1 ° N. 147.4 °
W) during a DE 2 overttight.

2. Model

The earlier version of the satellite track model was described

in detail by Emery et al. [1985]. Briefly. it uses DE 2 measure-
ments of energetic electron spectra in an auroral code to

determine the particle ionization rates. The measured ion drifts
and electron densities at satellite altitude, as well as a model of

solar flux, are also used as model inputs. The profile of electron

and ion densities, temperatures, conductivities and Joule heat-
ing rates, as well as particle and solar heating rates, are

calculated from theseinputs in a neutral atmosphere modified

to reproduce the measured temperature and O/N 2 ratio at the
satellite altitude.

We have extended the Emery et al. satellite track code using

a hybrid approach. In this scheme, we utilize the global mean
thermosphere/ionosphere code of Roble et al. [1987b] to

model the ionospheric processes below the satellite orbit theo-

retically. Empirical and semi-empirlcal models such as MSIS-

90 [Hedin et. al., 1991] and the VSH [Killeen et al., 1987]

model are used to determine the neutral atmosphere structure
and winds.

The solar EUV and UV fluxes are obtained from the empi-
rical solar flux model of Hinteregger [1981] that is based on

the Atmosphere Explorer Satellite measurements. The solar
EUV and UV flux model parameterizes the solar flux into 59

wavelength bands and emission fines. These wavelengths have
been specified by Torr et al. [1979] and Torr and Torr [1985]

along with the effective absorption and ionization cross sec-

tious. This parameterized version of the solar flux is used in the
global mean model and is adopted in our model to calculate the

photoionization rate with some modifications for calculating

the solar zenith angle at each position along the satellite track.
The ionization caused by secondary photoelectrons is also

calculated in our model using the analytical expression of
Richards and Tort [1988].

The auroral ionization rates are calculated following the

method of Rees [1963, 1969]. The electron flux needed in this

calculation is determined from the low-altitude plasma instru-
ment (LAPI) measurements. The calculated auroral ionization
rate at each altitude and latitude below a satellite track is added

to the photoionization rate to determine the total ionization rate
for the calculation of ion and electron densities.

The one-dimensional O + diffusion equation derived by

Roble et al. [1987b] is solved in a vertical constant pressure
surface coordinate system, using the calculated total ionization

rates. This veaical coordinate system consists of 13 pressure

levels ranging from approximately 97 to 600 Ion. The use of a

pressure coordinate system insures that the normalized ioniza-

tion rates determined from the DE 2 electron flux spectra are
independent of atmospheric model parameters [Fuller-Rowell

and Evans, 1987]. The upper boundary conditions of this
equation are determined by the DE 2 electron density measure-
ments, with an assumption that O + is the dominant ion at the

satellite altitude. The lower boundary condition assumes pho-
tochemical equilibrium. The one-dimeusional O + diffusion

equation solved here does not include the horizontal transport.
In the E and F l region the neglect of horizontal transport is

justified because photochemical time constants are fast com-

pared to the transport time constant. In the F 2 region, however,
horizontal transport can have an important influence on the O+

and hence on the electron density distributions. Because NO +.
O2 +, and N2 + are much shorter lived, photochemical equili-

brium is assumed throughout the thermosphere for lhese
species. Their distribution is thus calculated using a photo-

chemical equilibrium code developed by Roble et al. [1987b].

By combining the production and loss terms of these species,

a fourth-order equation for electron density may be derived.

The quadratic equation is solved using the procedures dis-
cussed by Roble and Ridley [1987].

The global mean thermosphere/ionosphere model also

allows us to solve the electron and ion energy equations. The

one-dimensional electron energy equation [Schunk and Nag):
1978] is solved by considering photoelectron heating its the
main source term and the electron-neutral elastic and inelastic

collision processes as the main loss terms. The upper boundary

condition of this equation is determined by the electron tem-
perature measurement at the satellite orbit. The lower

boundary condition of this equation is set equal to the neutral
temperature calculated by the MSIS-90 model. The ion tem-

perature is then calculated by considering the local thermal

equilibrium between the ions and neutrals, including the Joule
heating specified from the satellite measurements and VSH
neutral winds.

The Pedersen and Hall conductivities are determined using
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the calculated electron and ion densities and temperatures. In

order to determine the Joule heating rate. we have used the
satellite measured ion drift vector to derive the electric field in

a background magnetic field which is measured at the satellite
orbit. This electric field is then assumed to map downward

along the magnetic field lines. The neutral wind vector profiles
needed in the Joule heating calculation are obtained from the
VSH model. The measured neutral winds are used as a guide

to adjust the Ap value in the VSH model so that it could rea-
sonably reproduce the measurements at the satellite altitude.

3. DE 2 Measurements From Orbit 1222

The Dynamics Explorer 2 satellite passed over the southern
hemisphere polar cap on orbit 1222 between 0500 and 0545
LIT on October 25, 1981. Simultaneous measurements from a
number of instruments carried onboard the satellite are used as

input to the satellite track model. The particle spectra are

obtained using the LAPI [Winningham et al., 1981]. The ion
drifts are obtained by combining the zonal and meridional

components from the ion drift meter (IDM) [Heelis et al.,
1981], and the retarding potential analyzer (RPA) [Hanson et

al., 1981] instruments, respectively. The neutral winds are
measured by the Fabry-Perot interferometer (FPI) [Hays et al.,

1981] and the wind and temperature spectrometer (WATS)

[Spencer et al., 1981]. In addition to these instruments, the

Langmuir probe (LANG) [Krehbiel et al., 1981] and the neu-

tral atmosphere composition spectrometer (NACS) [Carignan
et al.. 1981] measure the electron density, temperature and

neutral constituent abundance. The magnetic fields are mea-
sured by the DE 2 magnetometer (MAG-B) [Farthing et al.,

1981].
Figure 1 shows a summary of observed plasma and neutral

gas parameters which are plotted as a function of universal

time for a DE 2 pass (orbit 1222). As can be seen from the
lower left panel, this orbit occurred during relatively active

geomagnetic conditions. The Kp index was about 5 and the
IMFBz was southward during the DE 2 pass. The ion drifts for

this orbit depict a conventional two-cell pattern with an anti-

sunward velocity of about 500 m/s in the polar cap. The ion
drifts are used to determine the electric field in a background

magnetic field measured by MAG-B.
The measured neutral winds and ion drifts show close agree-

ment in magnitude and direction throughout the dusk auroral
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Figure 1. A summary of DE 2 measurements during orbit 1222. The neutral winds and ion drifts are
shown in the top two _ plotted against time, attitude, and altitude of the spacecraft as it passes (left-to-

right) over the southern hemisphere (summer) polar region. The second panel shows the atomic oxygen and

nitrogen densities and electron density. The third panel shows the electron, ion and neutral temperatures. The
bottom trace shows the measured vertical winds and ion drifts. The lower inset to the left shows the time

history of the IMF components and the geophysical indices AE and Kp for 24 hours prior to the orbital pass.

The mid-point UT for the satellite pass is denoted by the vertical dotted line. The upper inset to the left shows

a polar dial (geographic latitude and solar local time) for the pass, with the neutral winds and ion drifts plot-
ted and the location of the geomagnetic pole given by the cross.
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Figure 2. Comparison of DE 2 measurements during orbit
1222 with the VSH and MSIS-90 models. The neutral wind

measurements are shown in the top trace. The second trace

depicts VSH model calculations along the satellite track. Com-

position measurements for N2 and O (solid line) axe plotted in
the second panel. Also shown are MSIS-90 values calculated

at the satellite altitude. The DE 2 measured neutral tempera-
ture is used to adjust the exospheric temperature in MSIS-90
model.

track model to derive the compositional structure below the
satellite altitude.

A factor of 2 difference in [O] density between the model
calculation and satellite measurement is observed in the

morning auroral region. The effects of this difference on model

calculated electron density and Joule heating are discussed in

the next section. It is very difficult for MSIS-90 model to make

an accurate prediction on composition changes in the auroral

region, especially during a geomagnetic storm. We plan to

improve our model by using a newly developed storm time
VSH model which promises some improvements in composi-

tion changes at high latitude thermosphere.

The electron precipitation flux along the DE 2 track was
measured by LAPI. Plate la shows the downward electron

energy flux averaged over pitch angles from 0° to 90 °. These

fluxes are detected from the LAPI instrument in the energy
range from the 5 eV to 31 keV. The increase of electron flux is

seen both in the morning and the evening auroral regions. A
large scale precipitation enhancement exists in the evening

auroral zone, while in the morning auroral region there are

only some discrete auroral ares. The energetic electron preci-
pitation in the polar cap is found to be very small. These mea-
sured electron flux spectra are used to determine the auroral
ionization rate below the satellite orbit as described earlier.

4. Model Calculations

z_ae and polar cap but demonstrate larger differences in velo-
cities in the dawn convection channel where the neutral winds

move in the opposite direction in the higher latitude regions

and respond only moderately to the strong sunward ion flow in
the lower latitude region. In response to these large velocity
differences, the ion temperature shows large increases (~10130
K) in the dawn convection channel. These increases are caused

by enhanced frictional heating.

The VSH model ofKilleen et al. [1987] was used to provide

neutral wind profiles below the satellite orbit during an active

geomagnetic period. Figure 2 shows a comparison of VSH
predicted neutral winds with the satellite measurements.

Although there are significant differences in detail, the VSH-

calculated winds show sufficient similarity with the satellite

measurements (antisunward polar cap flow, bounded by

moderate and partially sunward flow in the auroral regions).
The calculated wind altitude profiles are used in the satellite
track model to determine the Joule heating rate.

The MSIS-90 model was used to provide the compositional

structure below the satellite orbit. The number densities for N 2
and 0 calculated from the modified MSIS-90 model along the
satellite track are plotted in the bottom panel of Figure 2
(dashed lines). The DE 2 measurements for these two consti-

tuents are also shown in Figure 2 (solid fines) for the same

orbit. In this calculation, we have adjusted the exospheric tem-

perature of the MSIS-90 model to the neutral temperature
measured at the satellite altitude without any changes in the

model inputs and lower boundary conditions. Comparison

between model calculated temperature with that measured by
the satellite suggests this is a reasonable adjustment for this
orbit. This adjusted MSIS-90 model is then used in the satellite

The calculated panicle ionization rate is shown in Plate lb

as a function of altitude in the satellite orbit plane. This ioniza-

tion rate is derived from the LAPI instrument. Two regions of
intense ion production are found in the morning and evening
auroral ovals. These enhancements in the ion production rate

are mainly caused by the energetic particles that are observed

in the auroral regions. Hard electrons have enough energy to
penetrate into the lower thermosphere and produce enhanced
ionization in the E region, with maximum rates of 3.0x104

cm "3 and 2.6x104 cm "3 near 115 km in the morning and

evening auroral region respectively. The polar cap is characte-

rized by a soft panicle drizzle. These particles produce less
intense ionization in this region. In addition to this particle ion-

ization, the solar photoionization production rate must be

taken into account, since a part of this orbit is in the sunlit polar
cap. Plate ld shows the total ionization rate which combines

the ion production rate from these two sources. The morning
auroral oval is sunlit, therefore solar photoionlzation domi-

nates most of the ion production in the F region. Panicle
precipitation is only important within the E region where few
solar photons penetrate. In the evening auroral zone, however,

particle precipitation dominates the total ion production rate at

all altitudes below the satellite orbit. Within the polar cap, the

ionization rate is controUed by solar photoproduction again.
The total ionization rate is used as an input to determine the
electron and ion densities in the satellite track model.

Plate lc illustrates the calculated electron density below the

satelLite orbit. Energetic particles in the auroral region enhance

the electron density at lower altitudes (E region) with a peak
electron density of ~4.4x105 cm "3 at 115 km near 72°S geo-

graphic latitude. The electron density in the evening auroral

zone is highly irregular due to the dominance of panicle pre-
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Plate 1. (a) Eight-second average of electron energy spectrograms for the downward electron precipitation

measured along orbit 1222. The model calculated parameters below this orbit are plotted as a function of
time along the orbital track of the satellite for (b) auroral ion production rate in log[era "3 s'l], (e) electron

density in log[era "3 s-l], and (d) total ion production rate in log [era "3s'l].

cipitation. It is clear that there exists a definite correlation
between the enhancement of particle precipitation in the

auroral region and the increase of the electron density in the

lower thermosphere. In contrast to the particle-dominated

auroral regions, the electron distribution in the polar cap is less

irregular, increasing with decreasing solar zenith angle.
Electron and ion temperatures are depicted in Figures 3 and

4, respectively. The electron and ion temperatures vary
smoothly in the satellite orbit plane except in the auroral

regions. Outside the auroral regions, the ion temperature is
lower than the electron temperature at higher altitudes, indi-

cating that energy is transferred from the electrons to the ions
through Coulomb collisions in these regions. However, inside
the auroral oval, the ion temperature becomes highly struc-

tured and can even exceed the electron temperature. This

occurs because the ion temperature responds directly to the

Joule heating, thus leading to the increase in magnitude.
The electron and ion temperatures and densities discussed
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Figure 3. Contours of electron temperature calculated below
satellite orbit 1222.

above are used to calculate the Hall and Pedersen conductivi-

ties. Plate 2a and 2b show this calculation. The Pedersen

conductivity peaks in the region near 125 kin, while the Hall
conductivity maximizes at lower altitudes between ~100 and

120 kin. The precipitating electrons contribute to the large
enhancement of the condnctivitles in the E region auroral oval.

This enhancement is less pronounced in the polar cap, which

is dominated by solar photoionization. The height-integrated

Hall and Pedersen condnctivitles are shown in Figure 5. Two
peaks for Hall and Pedersen couductivities are found within

the morning auroral region near 72°S and 64°S, with maxi-

mum values of the Hall conductivity of about 35 mhos. Within
the evening auroral oval the height-integrated Hall and

Pedersen conductivities have more irregular structures, with
amplitudes between 5 and 18 mhos. The height-integrated Hall

conductivity is larger than the height-integrated Pedersen con-
ductivity in the auroral regions, reflecting the harder auroral
particle precipitation which produces ionization in the lower E

region rather than at higher altitude where Pedersen conductiv-
ity dominates.

The calculated Joule heating rates in the satellite orbit plane

are shown in Plate 2d. The largest Joule heating rate occurs in
the morning auroral region where large ion drifts are observed

(Figure 1). The maximum rate is about 6x10"6 ergs/cm3s at 125

km near 67°S. Another enhancement ix,Joule heating is found

in poleward of this auroral region, corresponding to the region
of large velocity shear between the neutrals and the ions. The

frictional heating resulting from the ion-neutral velocity differ-

ence ellhane_ the Joule heating rate, which reaches a peak
value of about 10 -6 ergsAn3s at 125 kin. Another enhancement

is located in the evening auroral region with a smaller magni-
tude. The Joule heating rate is smaller in the polar cap than in
the auroral zone because the neutral wind moves in the same

direction as the ion drift in this region, which reduces the fric-
tional heating rate.

The factor of 2 difference in [O] density seen in Figure 2

may have a significant effect on the electron density and Joule

heating rate. To estimate this effect, we have constructed a new

[0] density profile by changing the exospheric temperature in

the MSIS-90 model so that the calculated [O] density is

reduced by one half at satellite altitude (340 kin). We use this

profile of [O] density to simulate what would happen in com-

pensating the factor 2 difference seen in Figure 2 and run our
model with the input specified at a point in the auroral region.

A decrease in electron density by as much as 30% is observed
at the F 2 peak. However. little change is found in the region

below 220 kin. Since the Joule heating rate peaks in the lower
thermc_phere and decreases rapidly with the increase of alti-

tude, this change is less important to the height integrated
Joule heating rate (in this case it is less than 5%).

The neutral gas heating rate due to particle precipitation is
shown in Plate 2e. The particle laeating rate is obtained by mul-

tiplying a neutral heating efficiency for auroral particle
precipitation given by Rees et al. [1983, Hgure 7] to the

auroral ionization rate shown in Plate lb. Neutral heating effi-
ciency has a value of about 55% up to an altitude of 200-250

km and then decreases above this altitude. The particle heating
rate is considerably smaller than the Joule heating rate in most

regions below the satellite orbit, but is important in the auroral
regions where it can even exceed the Joule heating rate below

100 kin. The neutral gas heating rates discussed here will be

used in the next section to study the electrical energy budget
below the satellite orbit.

5. Poynting Flux and Joule Heating

The study of the electrical energy budget in the lower ther-

mosphere/ionosphere is critically dependent on the electrical
energy exchange rate between this region and the magneto-

sphere. In most cases, the magnetosphere/solar wind dynamo
is a source of electric energy to the high-latitude thermosphere/

ionosphere. Some of this energy is dissipated in the lower ther-
mosphere by Joule heating. The rest is converted into neutral

mechanical energy through Lorentz energy transfer. The
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Figure 4. Contours of ion temperature calculated below
satellite orbit 1222.
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Plate 2. The model calculated parameters below satellite orbit 1222 for (a) Hall conductivity in log[mho/

m], (b) Pedersen conductivity in log[mho/m], (c) particle heating rate in log[ergs cm "3sa]. and (d) Joule

heating rate in log[ergs cm "3 s'l].

Poynting flux derived at the satellite altitude provides a mea-

sure of the net energy flow between the magnetosphere and the

thermosphexe/ionosphere below the satellite orbit. Recently,

Kelley et al. [1991] have used the measurements from the
I-HLAT satellite to determine the Poynting flux in the high-

latitude thermosphere. They compared the field-aligned

Poyating flux with the height-integrated Joule heating rate but
made no allowance for neutral wind contributions. Thayer and

Vickrey [1992] and Deng et al. [1993] have studied this con-

cept further by including neutral wind feedback processes. By

assuming some spatial homogeneity in the electrodynamics
perpendicular to the magnetic field lines, it is found that the

field-aligned Poynting flux derived at the sp_.ecraft position is

equal to the flux-tube-integrated energy conversion rate below

the satellite orbit [Thayer and Vickrey, 1992; Gary et al., sub-
mitted manuscript, 1994]. This energy conversion rate can be
determined by the Joule heating rate plus the work done on the

neutrals by the Lorentz force (i.e., mechanical energy transfer



1618 DENGETAL.: ONE-DIMENSIONAL HYBRID SATELLITE TRACK MODEL

40.0

36.0

32.0

28.0

24.0

o 20.0

_- 16.0

12.0 _I t

I It{

8.0 _
4.0

0.0

UT 18304 18440

[..AT -58.7 -67.8
[,ST 20.8 20.8

ALE 366.6 348.1

Height Integrated Conductance

II/I
I I

i i i

....... Hall

Pedersen

I t I I

18576 18712 18848 18984 19120 1925b

-67.8 -86.0 -84.9 -75.8 -6b,7 -57.6
20.8 20.8 8.7 8.7 8.7 8.7

348.1 329.3 329.3 335.7 348.3 367.0

Figure 5. The height-integrated Hall conductivity (dashed

llne) and Pedersen conductivity (solid line) in (mho) along sat-
ellite orbit 1222.

rate). In this section, we study the relations between the Poynt-

hlg flux, Joule heating rate and mechanical energy transfer
rate.

The Poynting flux is defined by S = ExTB/g o, where E is the
electric field measured at the satellite orbit and 6B is perturba-

tions of the geomagnetic field measured at the satellite track.

The electric fields needed in dete_ the Poynting flux are
derived from the ion velocities measured with the IDM and the

RPA. The perturbation magnetic field is obtained as the differ-
ence between the magnetic field measured at the DE 2 satellite

from MAG-B and a model of the Earth's intrinsic field derived

from the Magsat mapping mission of the previous year. The
accuracy of this perturbation magnetic field is limited by deter-
mining the base line of the Earth's intrinsic field. A several

hundred nanotesla deviation of the perturbation field may

occur due to the uncertainty in the attitude of the DE 2 space-

craft and the astromast upon which the magnetometer sensor is
mounted. To compensate for these errors, a cubic splme was

used to determine a new base fine. The details of this technique

are described by Gary et el. (submitted manuscript, 1994).
This fitted curve is assumed to be a reafistic base line for the

intrinsic magnetic field.
Hgure 6 shows the 1 second resolution data for the derived

field-afigned Poynthlg flux along orbit 1222 with a nominal
accuracy of 1.0 ergs/cm2s. The flux is entirely downward (pos-

Rive) throughout the pass, with the maximum value of 19.5

ergs/cm2s occurring in the morning auroral oval near 67°S. In

the evening auroral zone the flux is relativ_y small and h-reg-
uiar with an amplitude of about 5 ergs/cm_s. The downward

flux indicates that the electromagnetic energy associated with

the Poynting flux is transferred from the magnetosphere to the

thermosphere.
Figure 7 illustrates the model-calculated height-integrated

energy conversion rate below the satellite orbit. This conver-

sion rate is determined by integrating the local energy transfer
rate defined as J. F_over altitude below the satellite orbit, where

the electrical current J is calculated by

J = o" (E + UxB)

The electrical field E is derived from the ion drifts and mag-

netic field measurements along the satellite orbit. We have

assumed that this electric field can map down to the lower ther-

mosphere along the magnetic field fines. The neutral wind U is

calculated from the VSH model. A comparison of this neutral
wind with the DE 2 measurements at the satellite altitude is

shown in Figure 2. The model-calculated energy conversion

rate is in good agreement with the measured field-aligned

Poynting flux. However. some differences exist in the polar
cap where the model under-estimates the Poynting flux.

The reason for this difference may lie in the underestimation
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of electron density in the polar cap due to the lack of transport
effects in our one dimensional model. The antisunward ion

drifts in the polar cap would move the daytime electron density

into the nightside ionosphere, resulting in an increase in elec-
tron density in the satellite orbit plane which is located near the
solar terminator. This transport effect is less pronounced in the

auroral regions because the particle-enhanced electron density

peaks at lower altitudes where transport is less important.
Another contribution factor comes from the errors in determin-

ing the Poynting flux, which is relative larger for small values

of the electric and perturbation magnetic fields, and at best is
known to within about 15 percent. A discussion of the error

involved in determining the Poynting flux from DE 2 is given

by Gary et al, (submitted manuscript, 1994). Finally, the dis-

agreement between VSH and DE 2 neutral wind in the polar

cap (Figure 2) may also contribute to this difference. In gen-
eral, the degree of agreement shown in this comparison gives
us confidence in the extended satellite track code, allowing the

model to be used to study the relative importance of the Joule

heatingrateand Lorentzenergytransfer ratebelowthesatellite

track.

The height-integratedJoulebeatingrateisshown inFigure

8.The Jouleheatingrateissimilarinmagnitudetotheenergy

conversionrateintheauroralregions,indicatingthatmost of

the electromagnetic energy imposed from the magnetosphere

in these regions is dissipated by Joule heating in the lower ther-

mosphere, and that only a small part of this energy is converted
into the neutral mechanical energy through Lorentz energy

transfer. Figure 9 shows the ratio of the calculated height-inte-

grated Lorentz energy transfer rate to the beight-integrated

Joule heating rate. As expected, The contribution of this
energy transfer rate is very small in the auroral regions (about
10°7o). However. it contributes significantly to the total energy

conversion rate in the polar cap and can reach about 40% of the
Joule heating rate across most of the polar cap. In this region.
the neutral wind can act either as a generator, in which case the

neutral wind releases energy and the Lorentz energy transfer

Height Integrated Joule Heating Rate
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Figure 9. The ratio of height-integrated mechanical energy
transfer rote (Lorentz transfer rote, LTR) to the heigl_-inte-

grated Joule heating rate(JHR) for satellite orbit 1222.

rate is negative, or as a load in which case the neutral wind

gains energy and the Lorentz energy transfer rate is positive.
It should point out that these results are based on the neutral

wind calculated from VSH model. The TIGCM upon which

the VSH model has been based has yet to be validated in the

lower thermosphere due to the lack of experimental data in this
region. Therefore the neutral wind calculated from VSH

model may not representthe real situation in the lower thermo-
sphere. A further study is required with the use of

comprehensive data set such as measurements that wig be
obtained from proposed TIMED mission.

6. An Overflight of Chatanika Site

In the previous section, we compared our model predictions

with the satellite-measured Poynting flux. Another way to test

these model predictions is to compare them with ground based

observations. An overflight of the incoherent scatter radar
facilities at Chatanika (65.1°N, 147.5°W) has provided such

an opportunity to carry out a detailed comparison between the
model calculations and radar measurements. The geometry of

thesatellitepassover Chatanika, Alaskaisillustrated in Figure
I0.For thiscloseconjunction,thesatellitewas atanaltitudeof

740 km (orbit1586).moving alongthe 146°W meridianat

1635 LIT on November 18, 1981.The overflightoccurred

duringsouthwardIMF conditions,witha Kp of3+.

The electronfluxspectrameasured by theLAPI instrument

on theDE 2 satelliteat1634:56UT isdisplayedinFigure11.

Thismeasurement was takenintheauroralregionswhere par-

ticle precipitation is strong. At this time the satellite was at
about the geographic latitude of Chatanika but was about 2°

off in longitude. The data were averaged over 8 seconds, which
covers about 64 km. The variability of the spectra shape at

different pitch angles is relatively small, thus implying an iso-
tropic distribution. The maximum electron flux is about 107 (1/
cm2-s-ev-str) at lower energy. At higber energy, there axe soma
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Figure 10. satellite track at 740 km altitude during the over-

flight of Chatanika, Alaska, on November 18. 1981.

small increases in hard auroral electron precipitation near 0.5
and 1 keV. Overall, the flux observed in this orbit is softer and

less intense than that typically observed in auroral arcs. An

average of this spectra over six pitch angles is used as an input
to our model for determining the ionospheric structure below
the satellite. For this calculation, we assumed that the observed

electron flux was present for a sufficiently long time for a
steady state electron density profile to be reached. The other

inputs include the electron density and temperature measured

by DE 2. Unfortunately. the neutral temperature measurement
is not available for this period. We have used the satellite-mea-

sured 0 density as a guide to adjust the exospheric temperature

in the MSIS-90 model so that it can reproduce the 0 density at

the satellite orbit. Another uncertainty is the ion drifts which

are also not available for this orbit. They are replaced by the
radar measurements.

The incoherent scatter radar at Chatanikn. Alaska, was

makin_ measurements during this overflight. The basic physi-
cal parameters measured by the radar are the electron density,

electron and ion temperatures, and the plasma velocity along
the line of sight of the radar beam. Data were obtained from 60

to about 800 km during this experiment. A detailed description

of the equipment and the measurement capabilities of the radar
is given by Leadabrand et al. [1972].

The overflight occurred on November 18. 1981. In this

experiment, the radar was operated in the MITHRAS 2 model
which provides a local measurement with a better time resolu-

tion [de la Beaujadiere et al., 1985. 1984]. This operation

mode consists of a set of three positions, one parallel to mag-
netic filed and the others on either side of magnetic meridian
at 70 ° elevation. The ion drift velocity is obtained by combin-
ing the line of sight velocities measured from these three

positions. A long pulse was used for the velocity and temper-
ature meastLrements and data were obtained at eight altitudes,

starting at about 103 km and spaced 50km apart. For the elec-

tron density measurements, a separate short (60 pa) pulse was
used, which gives an altitude resolution of about 9 kin. The

conductivities and Joule heating are derived by using a neutral
atmosphere model and neglecting the neutral winds. The elec-

tron density was corrected for temperature effects, and

calibration was carried out at two levels (J. D. Kelly, private

communication. 1994). The absolute calibration was per-
formed using the Sheep Creek (near Fairbanks, Alaska)

ionosonde For2 data. These data were compared to electron
density measurements made with the Chatanika incoherent

scatter radar on the average of once per year. This indicated
agreement within 10%. The second calibration was a relative

calibration performed by inserting a known level of noise at
the end of every interpulse period. This calibration verified
that there were no short term variations that were unaccounted

for. Changes in receiver gain and baclqground noise were
eliminated in data processing using the inserted calibration

noise pulse. More information about this period of data is pro-

vided by Senior et al. [1987] and de la Beaujadiere et al.
[19851.

Ftgure 12 shows a comparison of our satellite track model-

calculated electron density profile with the radar measurement

during the overflight (1635 UT). The solid line indicates the

electron density obtained from an average of the radar mea-
surements between 1629 and 1642 UT. The error bars are

obtained from the standard deviation from the average during
this period. The dashed Line is calculated from the satellite
track model using the DE 2 measurements at 1635 UT, about

2° in longitude to the east of Chatan]ka. The satellite track

model overestimates the electron density in the F region, while

it underestimates the electron density in the E region. At high
altitudes, the data agree well with the model predictions, indi-
cating that the boundary condition determined by the satellite

is close to the radar measurement. This overflight happened in
the early morning (solar local time 0706), so the solar zenith

angle at E region altitudes was large. Therefore the observed

enhancement of E region electron density is mainly caused by
energetic particle precipitation. Our model reproduces this

increase quite well although it underestimates the magnitude.

e I0

tO

10

10 °

Figure 11.

DE 2/LAPI 11/18/81 UT: 16:35

g 'If.
o,

!. '!1 1

' ;If!:
• ;0

|

Pitch Angle

18.2 "

22.8 •

30.4 •

44.9 *

59.7 •

74.7 •

t.

I.

,!

.i:

"!

10 : 10 t 10 = 10 • 10 5

Energy (ev)

Eight-second average of electron spectra mea-
sured by the LAPI instrument around 1634:56 UT on
November 18. 1981.



DENGETAL.:ONE-DIMENSIONALHYBRIDSATELLITETRACKMODEL 1621

Thisunderestimationmaybecausedbytheuseof a neutral

atmosphere model, which has limited accuracy in the auroral

regions during active geomagnetic conditions. It may also be
explained by the changes of minor neutral constituents such as
NO. In our model, we have only used the global mean value of

the NO density. However, the NO density will increase signi-

ficantly from its mean level in the auroral region due to the

increases in the N 2dissociation rate resulting from intense par-
title precipitation [Roble, 1992].

In the F-region, the model electron density is substantially

higher (about 50%) than that of the radar measurements.
Several factors contribute to this disagreement. First, as the
altitude increases, horizontal transport effects become impor-

tant. Since this overflight occurred on the equatorial side of the

morning auroral oval, the convection is more likely to be in the
sunward direction. The transport effect therefore would tend to

move the lower electron density in the dark ionosphere into the

morning auroral region, resulting in a decrease in electron den-

sity in this region. A one-dimeusional model cannot include
this effect and should therefore lead to an overestimation of the

electron density. Another contributing factor is time dependent
effects of the auroral event. As discussed by Rees et al. [ 1980],

an auroral event is a time dependent process in which various

ion species respond to particle bombardment at different rates.
To model this process rigorously requires a knowledge of the

time history of the precipitation electron flux. It is possible that

a steady state is not reached at the time of the overflight due to

the sluggish response of the F region ionization. As a result,
the electron density remains lower than that in the steady state,

where it has higher value due to the decrease in the electron
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Comparison of radar measured electron density

profile (solid line) with the model calculations (dashed line)
during the overflight at 1635 UT. The electron density profile
is obtained from an average of the radar measurements
between 1629 and 1642 UT. The error bars are obtained from

the standard deviation of the average during this period.
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The same as Figure 12 except for the electron

temperature. Finally, the 2 ° longitudinal offset of the satellite
pass over the Chatanika site may also contribute to this dis-

agreement. Overall, despite the discrepancy between the
experimental result and our model calculation, there is a good

general agreement as to the morphology of the electron density

profile.
The comparison of electron temperatures is shown in Figure

13. While crude agreement in shape is seen, a significant dif-
ference between the radar-measured temperatures (solid line)

and the modeled temperatures (dashed line) of ~400 K exists
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at the upper altitudes, with the modeled temperatures being
higher than the radar measurements. Since the satellite mea-
surement is used as the upper boundary condition for the

satellite track code, this discrepancy may account for some of

the disagreement at lower altitudes. It is impossible to deter-

mine whether instrumental effects or spatial changes in the

electron temperature distribution are responsible for the dis-
crepancy. The ion temperatures are illustrated in Figure 14.

The model overestimates the ion temperature in the region
below 300 km by as much as 400 K. Since the ion temperature

is closely coupled with the neutral temperature in this region,
most of difference is due to the overestimation of neutral tem-

perature in the F region below the satellite orbit.
The comparison of radar-measured and modeled Hall and

Pedersen conductivities are depicted in Figures 15 and 16,

respectively. There is a good agreement between the model

calculations and the radar measurements, l:rmally, we present a
comparison between radar-derived Joule heating rates and the

model calculation in Figure 17. In the model calculation, the

neutralwind has beenneglected.Thisisinagreementwiththe

assumptionused toobtainJouleheatingratefrom theradar

data.As expected,good agreement isattainedinthe lower

thermosphere,which provides confidencefor the results

obtainedintheprevioussection.The differenceatthehigher

altitudesismainlycausedby theoverestimationoftheelectron

density.SincetheJouleheatingpeaks inthelower thermo-

sphere and decreasesrapidlywith increasingaltitude,this

disagreementdoes nothave a significanteffecton theheight-

integratedJouleheatingrate(thevalue of height-integrated

Jouleheatingroteareabout 1.38and 1.51ergs/cm2-s,calcu-
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line) from the radar measurement with the model calculation

(dash line) at the overflight. The Hall conductivity profile is

obtained from an average of derived Hall conductivity
between 1629 and 1642 LIT. The error bars are obtained from

the standard deviation of the average during this period.
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lated from radar measurements and model predictions
respectively).

7. Summary

We have developed a satellite track model. The major model
inputs are measurements of the electron precipitation flux to
determine ionization rates and of ion drifts to determine the

Joule heating rates. The model has been used to study the
ionospheric structure below the satellite pass (orbit 1222) and
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has been compared with the incoherent scatter radar measure-

ments at Chatanika, Alaska during a DE 2 overflight. Our

principal results may be listed as follows:

1. The model has demonstrated an ability to map the DE 2

satellite measurements into the lower thermosphere-iono-

sphere.

2. A good first-order agreement has been reached between

the DE 2 derived field-aligned Poynfing flux and the height-

integrated energy conversion rate, yielding confidence in the

calculated lower thermospheric conductivities and Joule heat-

ing rates.

3. The study of electromagnetic energy budget below the

sateUite orbit indicates that most of the electric energy from the

magnetosphere is dissipated by Joule heating in the auroral

region. Only a small part is converted into the neutral wind

mechanical energy in this region. However, the neutral wind

contributes significantly to the electromagnetic energy budget

in the polar cap.

4. Comparison between the radar measurements and model

predictions indicates a good agreement in lower thermospheric

conductivities and Joule heating rates.

Acknowledgments. This study was supported by NASA grant

NAGW-3457 and NAG5-465, by NSF grant ATM-8918476 and

ATM-9096134, and USAF grant FI9628-89-K-0026 to the

University of Michigan. The study also made use of the CEDAR

database at NCAR, which, along with Chatanika radar, is sup-

ported by the National Science Foundation. The authors are

grateful to O. de la Beaujardiere and J. D. Kelly for useful discus-

sions about the Chatanika data. We gratefully acknowledge W. B.

Hanson, R. A. Heelis, and J. A. Slavin for providing their DE 2

data. We also would like to thank Dr. R. A. Heelis for useful dis-

cussions and suggestions.
The Editor thanks C. G. Fesen and M. J. Buonsanto for their

assistance in evaluating this paper.

References

Carignan, G. R., B. E Block, J. C. Maurer, A. E. Hedin, C. A.

Rebel and N. W. Spencer, The Neutral Mass Spectrometer on

Dynamics Explorer, Space Instrum., 5,429-442, 1981.

de la Beaujardiere, O., V. B. Wiekwar, M.J. Baron, J. Holt, R.M.

Wand, W.L. Oliver, P. Bauer, M. Blanc, C. Senior, D. Alcayde,

G. Caudal, J. Foster, E. Nielsen, and R. Heelis, MITHRAS: A

brief description, Radio Science, 19, 665-673, 1984.

de la Beaujardiere, O., V. B. Wickwar, G. Caudal, J. M. Holt, J. D.

Craven, L.A. Frank, L.H. Brace, D. S. Evans, J. D. Winning-

ham, and R. A. Heels, Universal time dependence of nighttime

F region densities at high latitudes, J. Geophys. Res., 90, 4319-

4332, 1985.

Deng, W., T.L. Killeen, A.G. Burns, R.G. Roble, J, Slavin, and

L.E. Wharton, The effects of neutral inertia on ionospheric cur-

rents in the high latitude thermosphere following a geomagnetic

storm, J. Geophys. Res. 98, 7775-7790, 1993.

Emery, B. A., R. G. Roble, E. C. Ridley, T. L. Killeen, M. H.

Rees., J. D. Winningham, G. R. Carignan, P. B. Hays, R. A.

Heelis, W. B. Hanson, N. W. Spencer, L. H. Brace and M. Sug-

Jura, Thermospheric and Ionospheric Structure of the Southern

Hemisphere Polar Cap on October 21, 1981, as Determined

From Dynamics Explorer 2 Satellite Data, J. Geophys. Res., 90,

6553-6566, 1985.

Farthing, W. H., M. Sugiura, B. G. Ledley, and L. J. Cahill, Jr.,

Magnetic field observations on DE-A and -B, Space lnstrum.,

5, 551-560, 1981.

Foster, J., An empirical electric field model derived from Chata-

nika radar data, J. Geophys. Res., 88, 981-987, 1983.

Foster, J. C., J.-P. St.-Maurice and V. J. Abreu, Joule heating at

high latitudes, J. Geophys. Res., 88, 4885-4896, 1983.

Fuller-Rowell, T. J., and D. S. Evans, Height integrated Pedersen

and Hall conductivity patterns inferred from the TIROS-NOAA

satellite data, J. Geophys. Res 92., 7606-7618, 1987.

Hanson, W. B., R. A. Heelis, R. A. Power, C. R. Lippincott, D. R.

Zachary, B. 1. Holt, L. H. Harmon, and S. Sanatani, The Retar-

ding Potential Analyzer for Dynamics Explorer-B, Space Sci.

Instrum., 5, 503-510, 1981.

Hays, P. B., T. L. Killeen, and B. C. Kennedy, The Fabry-Perot

Interferometer on Dynamics Explorer, Space lnstrum., 5, 395-

416, 1981.

Hays, P. B., T. L. Killeen, N. W. Spencer, L. E. Wharton, R. G.

Roble, B. E. Emery, T. 1. Fuller-Rowell, D. Rees, L. A. Frank,

and J. D. Craven, Observations of the dynamics of the polar

thermosphere, J. Geophys. Res., 89, 5597-5612, 1984.

Hedin, A.E., M.A. Biondi, R.G. Burnside, G. Hernandez, R.M

Johnson, T.L. Killeen, C. Mazaudier, J.W. Meriwether, J.E.

Salah, R.J. Sica, R.W. Smith, N.W. Spencer, V.B. Wiekwar, and

T.S. Virdi, Revised global model of thermosphere winds using

satellite and ground-based observations, J. Geophys. Res., 96,

7657-7688, 1991.

Heelis, R. A., W. B. Hanson, C. R. Lippincott, D. R. Zuccaro, L.

H. Harmon, B. J. Holt, J. E. Doherty, and R. A. Power, The Ion

Drift Meter for Dynamics Explorer-B, Space Instrum., 5 511-

522, 1981.

Heelis, R. A., J. K. Lowell, and R. W. Spiro, A model of the high-

latitude ionospheric convection pattern, J. Geophys. Res., 87,

6339-6345, 1982.

Hcelis, R. A. and W. R. Coley, Global and local Joule heating

effects seen by DE 2, J. Geophys. Res., 93, 7551-7557, 1988.

Heppner, J. P., Empirical models of high-latitude electric fields, J.

Geophys. Res., 82, 1115-1125, 1977.

Hinteregger, H. E., Representations of solar EUV fluxes for aero-

nomieal applications, Adv. Space Res., 86, 801-813, 1981.

Kelley, M. C., D. J. Knudsen and I. F. Vickery, Poynting flux mea-

surements on a satellite: A diagnostic tool for space research, J.

Geophys. Res., 96, 201-207, 1991.

Killeen, T. L., R. W. Smith, N. W. Spencer, J. W. Meriwether, D.

Rees, G. Hernandez, P. B. Hays, L. L. Cogger, D. P. Sipler, M

A. Biondi and C. A. Tepley, Mean neutral circulation in the

winter polar F region, J. Geophys. Res., 91,1633-1649, 1986.

Killeen, T. L., R. G. Roble, and N. W. Spencer, A computer model

of global thermospheric winds and temperatures, Adv. Space

Res 7, 207-215, 1987

Killeen, T. L. and R. G. Roble, Thermosphere Dynamics driven

by magnetospheric sources: contributions from the first five

years of the Dynamics Explorer program, Rev. Geophys. Space

Phys., 329-367, 1988.

Krehbiel, J. P., L. H. Brace, R. E Theis, W. H. Pinkus, and R. B.

Kaplan, Dynamics Explorer Langmuir Probe Instrument, Space

lnstrum., 5, 493-502, 1981.

Leadabrand, M. J. Baron, J. Petriceks and H. E Bates, Chatanika,

Alaska, auroral-zone incoherent-scatter facility, Radio Science

7, 747-756, 1972.

Rees, M.H., Auroral ionization and excitation by incident ener-

getic electrons, Planet. Space Sci., 11, 1209-1218, 1963.



1624 DENGETAL.:ONE-DIMENSIONALHYBRIDSATELLITETRACKMODEL

Rees,M.H.,Auroral electrons, Space Sci. Rev., 10, 413-441,
1969.

Rees, M. H., R. G. Roble, J. Kopp, V. J. Abreu, L. H. Brace, H. C.

Brandon, R. A. Heelis, R. A. Hoffman, D. C. Kayser, and D. W.

Rusch, The spatial-temporal ambiguity in auroral modeling, J.

Geophys. Res., 85, 1235-1245, 1980.

Rces, M. H.. B. A. Emery, R. G. Roble, and K. Stamnes, Neutral

and ion gas heating by auroral electron precipitation, J. Gee-

phys. Res., 88, 6289-6300, 1983.

Richards, P. G., and D. G. Torr, Ratios of photoelectron to EUV

ionization rates for aeronomie studies. J. Geophys. Res., 93,

4060, 1988.

Richmond, A. D. and Y. Kamide, Mapping electrodynamie fea-

tures of high-latitude ionosphere from localized observations:

Technique, J. Geophys. Res., 93, 5741-5759, 1988.

Roble, R. G., B. A. Emery, R. E. Dickinson, E. C. Ridley, T. L.

KiUeen, P. B. Hays, G. R. Carignan, and N. W. Spencer, Ther-

mospheric circulation, temperature and compositional structure

of the southern hemisphere polar cap during October-Novem-

ber, 1981, J. Geophys. Res., 89, 9057-9068, 1984.

Roble, R. G., B.A. Emery, T.L. Killeen, G.C. Reid, S. Solomon,

R.R. Garcia, D.S. Evans, P.B. Hays, G.R. Carignan, R.A. Hee-

lis, W.B. Hanson, D.J. Winningham, N.W. Spencer, and L.H.

Brace, Joule heating in the mesosphere and thermosphere dur-

ing the July, 13, 1982, solar proton event, J. Geophys. Res., 92,

6083-6090, 1987a.

Roble, R. G., E. C. Ridley and R. E. Dickinson, On the global

mean structure of the thermosphere, J. Geophys. Res., 92,

8745-8758, 1987b.

Roble, R. G., and E. C. Ridley, An auroral model of the NCAR

thermospheric general circulation model (TGCM), Annales

Geophysicae, 5A, (6), 369-382, 1987e.

Roble, R. G., and R. E. Dickinson, How will changes in carbon

dioxide and methane modify the mean structure of the meso-

sphere and thermosphere?, Geophys. Res. Lett., 16, 1441-1444,

1989

Roble, R. G., The polar lower thermosphere, Planet. Space Sci.

40, 271-297, 1992.

Schunk, R. W. and A. E Nagy, Electron temperature in the F

region of the ionosphere: Theory and observation, Rev. Gee-

phys., 16. 355, 1978.

Senior, C., J. R. Sharber, O, de la Beaujardiere, R. A. Heelis, D. S.

Evans, J. D. Winningham, M. Sugiura, and W. R. Hoegy, E and

F region study of the evening sector auroral oval: A Chatanika/

Dynamics Explorer 2/NOAA 6 comparison, J. Geophys. Res.,

92, 2477-2494, 1987.

Spencer, N. W., U E. Wharton, H. B. Niemann, A. E. Hedin, G. R.

Carignan,and J.C. Maurer, The Dynamics ExplorerWind and

Temperature Speclrometer,Space Instrum.,5,417-428, 1981.

Thayer, J. P. and J. F. Vickrey,On the contributionof thermo-

sphericneutralwind to high latitudeenergefics,Geophys. Res.

Lett.,19, 265-268, 1992.

Torr,M. R.,and D. G. Tort,Ionizationfrequenciesforsolarcycle

21: revised,J.Geophys. Res.,90,6675-6678, 1985.

Torr,M. R., D. G. Torr.,R. A. Ong, and Hintetegger,Ionization

frequenciesfor major thermospheric constituentsas a function

of solarcycle21, Geophys. Res. Left.,6, 771-774, 1979.

Tort,M. R., D. G. Tort,and Hinteregger,Solarfluxvariabilityin

the Schumann-Runge continuum as functionof solarcycle 21.

J. Geophys. Res., 85, 1633-1649, 1980.

Wallis, D. D. and E. E. Budzinski, Empirical models of height-

integrated conductivity, J. Geophys. Res., 86, 125-137, 1981.

Winningham, J. D., J. L. Burch, N. Eaker, V. A. Blevins, and R. A.

Hoffman, The Low Altitude Plasma Instrument (LAPI), Space

Instrum., 5,465-476, 1981.

A. G. Burns, R. M. Johnson. and T. L. Killeen, Space Physics

Research Laboratory, Department of Atmospheric, Oceanic and
Space Sciences, University of Michigan, Ann Arbor, MI 48109-
2143.

W. Deng, Atmospheric Seieoces Group, Haystack Observatory,

Massachusetts Institute of Technology, Wesfford, MA 01886. (e-

mail: Internet: wdg@hyperion.haystack.edu)

B. A. Emery and R. G. Roble, National Center for Atmospheric
Research Boulder, CO 80307.

J. B. Gary, University of Texas at Dallas, Richardson, TX
75803.

J. D. Winningham, Department of Space Sciences, Southwest
Research Institute, San Antonio, TX 78284.

(Received October 11, 1993; revised August 4, 1994;
accepted August 10, 1994.)


